First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.
In this follow-up to the New York Times best-selling The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.
An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Sale!
Quantum Mechanics: The Theoretical Minimum
Rated 4.40 out of 5 based on 5 customer ratings
(5 customer reviews)
$19.99
This product is a digital download type PDF that is available for download immediately after purchase.
Category: mathematics and physics books
Description
Reviews (5)
5 reviews for Quantum Mechanics: The Theoretical Minimum
Only logged in customers who have purchased this product may leave a review.
Related products
GET LATEST NEWS
Newsletter Subscribe
It only takes a second to be the first to find out about our news and promotions...
Share Us
About Us |Contact US | Do Not Sell OUR BOOKS | Privacy Policy | Refund and Returns Policy | Terms and Conditions |
The Molly.College® logo are registered Molly.College of Thrift Books Global, LLC
The biggest challenge is the understanding quantum entanglement because there is no classical analog for a system whose full state description contains no information about its individual parts, and nonlocality (two particles separated at large distances) is difficult to define. The best way to come to terms with these issues is to internalize the mathematics.
Two principles emerge as fundamental, the spin state of quantum particle or qubit. In classical physics, everything can be built out of yes/no (1 or 0) questions. Similarly, in quantum mechanics, every logical question becomes a question about qubits (basic unit of quantum information, two level quantum system, spin up or down, both in a state of superposition). The second principle is the harmonic oscillator. How do particles move in quantum mechanics? We know that fundamental particles have wave-particle duality. It exists in both wave and particle forms. Then how do matter in its wave state can have gravity associated with it? That makes understanding quantum gravity harder. In addition, waves oscillate much like a mass attached to the end of a spring. The oscillators, not masses attached to springs, are imagined as waves, in fact they are the oscillating electric and magnetic fields. For each wavelength, there is a mathematical harmonic oscillator describing the amplitude or strength of the field. For many waves there is a lot of harmonic oscillators all running simultaneously. Fortunately, they all oscillate independently. The higher-energy wave functions oscillate more rapidly and are more spread out. This is the consequence of quantum field theory. Another question is how do quantum states change with the evolution of time? They change so that information describing the system are never erased. This is one of the most fundamental phenomenon that haunts in describing black holes.
This book sticks to the simplest possible quantum system, one with a two-dimensional state space. The algebra is developed from scratch and author Leonard Susskind describes at a very leisurely pace and the quantum reality is described in the simplest context.